Parameters
dataFrame
Input data.frame. The columns must be named.
The first column must be time index, strings or values unless noTime = True
.
columns
String or vector of column name(s) in the input data used to create the library. String names must be whitespace separated.
target
String of column name in the input data used for prediction.
lib
String or vector with pairs of start and stop indices of input data rows used to create the library of E-dimensional embedding vectors. String indices must be whitespace separated.
pred
String or vector with pairs of start and stop indices of input data rows
where predictions are made. String indices must be whitespace separated.
Tp
Prediction horizon (number of time column rows).
E
Embedding dimension.
tau
Time offset of embedding specified as number of time series rows. tau
< 0 are lags, tau
> 0 future values.
theta
In Smap
: S-Map neighbor localisation exponent. Single numeric.
In PredictNonlinear
: A whitespace delimeted string or numeric vector with values of S-map localisation parameters to be evaluated.
knn
Number of nearest neighbors. If knn=0
; knn
is set to E+1
for Simplex()
; set to number of lib
data rows for SMap()
.
exclusionRadius
Excludes library vectors from the search space of nearest neighbors if their relative time index is within exclusionRadius
.
embedded
Logical specifying if the input data are embedded. If embedded = True
, no emedding is performed. If embedded = False
, all input data are embedded to dimension E
with time shift tau
.
libSizes
String or vector of integers specifying CCM library sizes. If three values are provided, and, if the third value is less than the second, they are treated as a sequence generator specifying the intial library size; the final library size; and the library size increment. String values must be whitespace separated.
sample
Integer specifying the number of random samples to draw at each library size evaluation for CCM.
random
Logical to specify random (True
) or sequential library sampling (False
) in CCM.
replacement
Logical to specify sampling with replacement in CCM. Not recommended.
includeData
Logical to return all CCM projection data frames.
seed
Integer specifying the random sampler seed in CCM. If seed=0
, then a random seed is generated.
multiview
Number of multiview ensembles to average for the final prediction estimate in Multiview.
D
Multiview dimension.
trainLib
Use in-sample (lib
=pred
) prediction for multiview ranking
excludeTarget
Exclude target
variable from multiviews
maxE
Maximum value of E
to evalulate in EmbedDimension
.
maxTp
Maximum value of Tp
to evalulate in PredictInterval
.
numThreads
Number of parallel threads for computation in EmbedDimension
; PredictInterval
and PredictNonlinear
.
pathIn
Filesystem path to input dataFile
. CSV format.
dataFile
CSV format data file name. The first row must be column names.
The first column must be time index, strings or values unless noTime = True
.
pathOut
Filesystem path for predictFile
containing output predictions.
predictFile
Observation and Prediction output file name. CSV format.
smapCoefFileSMap
Coefficient output file name. CSV format.
smapSVFile
SMap
singular value output file name. CSV format.
solver
In pyEDM SMap()
: An instance of a sklearn.linear_model object.
ignoreNan
Logical specifying whether data NaN values are to be ignored in SMap
: default True
.
noTime
Logical indicating whether input data lack a time vector in first column: default False
.
validLib
Conditional embedding. Boolean vector identifying time series rows whose corresponding embedding vectors define the state-space library.
generateSteps
Generative feedback predictions for Simplex()
or SMap()
.
parameterList
Add parameter dictionary to return objects in Simplex()
,SMap()
,CCM()
,Multiview()
.
verbose
Logical to produce additional console reporting.
const_pred
Logical to add a constant predictor column to the output. The constant predictor is X(t+1) = X(t).
showPlot
Logical to plot results (pyEDM & rEDM).