Multiview

Description :
Multiview embedding and forecasting of the input data file or DataFrame.

Python :

Multiview(dataFrame=None, columns='', target='',
lib='', pred='', D=0, E=1, Tp=1, knn=0, tau=-1, 
multiview=0, exclusionRadius=0, trainLib=True,
excludeTarget=False, verbose=False,
verbose=False, numProcess=4, showPlot=False)

R :

Multiview(pathIn="./", dataFile="", dataFrame=NULL,
lib="", pred="", D=0, E=1, Tp=1, knn=0,
tau=-1, columns="", target="", multiview=0,
exclusionRadius=0, trainLib=TRUE, 
excludeTarget=FALSE, parameterList=FALSE,
verbose=FALSE,  numThreads=4, showPlot=FALSE, noTime=FALSE)

Parameter Type Default Purpose
dataFrame pyEDM: pandas DataFrame
rEDM: data.frame
None Input DataFrame
target string "" Prediction target library column name
lib string or [] "" Pairs of library start stop row indices
pred string or [] "" Pairs of prediction start stop row indices
D int N cols Multiview state-space dimension
E int 1 Embedding dimension
Tp int 1 Prediction Interval
knn int 0 Number nearest neighbors (if 0 then set to E+1)
tau int -1 Embedding time shift (time series rows)
multiview int 0 Multiview parameter : (if 0 then set to 'sqrt(C)' where C is the number of D-dimensional combinations out of all available data vectors)
exclusionRadius int 0 Prediction vector exclusion radius
trainLib bool True Use in-sample (lib=pred) prediction for ranking
excludeTarget bool False Exclude target variable from multiviews
parameterList bool False Include parameter dictionary in return
numThreads int 4 Number of threads to use
verbose bool False Echo messages
showPlot bool False Plot results (pyEDM, rEDM)
noTime bool False Do not require first data column of time or index
pathIn string "./" Input data file path
dataFile string "" Data file name
pathOut string "./" Output file path
predictFile string "" Prediction output file


Refer to the parameters table for general parameter definitions.

Notes :
If predictFile is provided the Predictions will be written to it in csv format.

If multiview is not specified it is set to 'sqrt(C)' where C is the number of D-dimensional combinations out of all available data vectors.

Returns :
Dict in pyEDM, named List in rEDM: with two DataFrames:
View
Predictions

The Predictions DataFrame has 3 columns: Time, Observations, Predictions.
The View DataFrame has E+3 columns.
The first E columns are the the column indices in the input data DataFrame that are embedded and applied to Simplex prediction.
The last three columns are "rho", "MAE", "RMSE" corresponding to the prediction Pearson correlation, maximum absolute error and root mean square error.

If parameterList = True, a dictionary of parameters is added.

Version 2.x: If returnObject = True returns the Multiview class object with all data and variables.