EmbedDimension
Description :
Evaluate Simplex prediction skill for embedding dimensions from 1 to maxE
.
Python :
EmbedDimension(dataFrame=None, columns='', target='',
maxE=10, lib='', pred='', Tp=1, tau=-1, exclusionRadius=0,
embedded=False, validLib=[], noTime=False, ignoreNan=True,
verbose=False, numProcess=4, showPlot=True)
R :
EmbedDimension(pathIn="./", dataFile="", dataFrame=NULL,
pathOut="", predictFile="", lib="", pred="",
maxE=10, Tp=1, tau=-1, exclusionRadius=0,
columns="", target="", embedded=FALSE, verbose=FALSE,
validLib=vector(), numThreads=4, showPlot=TRUE, noTime=FALSE)
Parameter | Type | Default | Purpose |
---|---|---|---|
dataFrame | pyEDM: pandas DataFrame rEDM: data.frame |
None | Input DataFrame |
columns | string or [] | "" | Column names for library |
target | string | "" | Prediction target column name |
maxE | int | 10 | Evaluate embedding up to maxE |
lib | string or [] | "" | Pairs of library start stop row indices |
pred | string or [] | "" | Pairs of prediction start stop row indices |
Tp | int | 1 | Prediction Interval |
tau | int | -1 | Embedding time shift (time series rows) |
exclusionRadius | int | 0 | Prediction vector exclusion radius |
embedded | bool | False | Is data an embedding |
verbose | bool | False | Echo messages |
validLib | bool [] | [] or None | Conditional embedding |
numThreads | int | 4 | Number of threads to use |
showPlot | bool | True | Show plot of E vs Rho (pyEDM, rEDM) |
noTime | bool | False | Do not require first data column of time or index |
pathIn | string | "./" | Input data file path |
dataFile | string | "" | Data file name |
pathOut | string | "./" | Output file path |
predictFile | string | "" | Prediction output file |
Refer to the parameters table for general parameter definitions.
Notes :
Version 1.x: numThreads
defines the number of worker threads for the maxE
embeddings.
Version 2.x: numProcess
defines the number of processes for the maxE
embeddings.
Returns :
DataFrame with columns E
and rho
.